NONSTEADY BURNING OF A SOLID PROPEL.LA.NT
IN A GASEOUS OXIDIZER FLOW

G. M. Makhviladze UDC 533.6

The burning of a solid propellant is investigated for nonsteady heat propagation in the in-
duction zone., The equation of heat conduction in the propellant is solved in finite form for
the case of a sharp change in burning rate; the time dependence of the temperature gradient
at the propellant surface is obtained and used to investigate the mechanism of collapse of
the diffusion flame above the surface. The combustion stability of a propellant burning in a
channel with a large free volume is analyzed. The perturbations of the gas-dynamic quan-
tities are related with the perturbations of the burning rate and hence with the properties
of the induction zone in the solid phase. An analysis of the dispersion relation for the lim-
iting case of propagation of acoustic waves in a stationary gas shows that the longitudinal
acoustic perturbations that develop in the channel may grow with time, interacting with the
heated subsurface layer of propellant.

1. The nonsteady burning of solid and liquid propellants is accompanied by a change in the state of
the subsurface heating (induction) zone that is characterized by the temperature gradient at the surface.
In the diffusion burning regime the burning rate is determined in the first approximation by the rate of sup-
ply of oxidizer to the diffusion flame and thus depends importantly on the parameters of the oxidizer gas
flow bathing the surface of the propellant. The physicochemical properties of the propellant itself, its heat
of gasification, specific heat, thermal conductivity, etc., have a much weaker influence on the burning rate,
so that they can be neglected [1].

The nonsteady propagation of heat in the induction zone is described by the linear one-dimensional
heat conduction equation

a0 a0 920
v = o i
with the following initial and boundary conditions
1=0,0=ef w=4E5=0,0=1E=0,0=0 (1.2)

Problem (1.1) and (1.2) is written in the dimensionless variables

° uczt e= T—-To

(1)
b T wE=—

Here, t is time, y is the coordinate normal to the propellant surface (the propellant is located aty > 0),
w=Ay/pscy is the thermal diffusivity of the propellant, u° is the steady-state burning rate maintained att<0,
as a result of which the steady-state temperature distribution was established, Tg is the surface tempera-
ture of the propellant, T, is the temperature in the interior of the propellant., Steady-state values are de-
noted by a superscript °. The time dependence of the burning rate u(t) is given by the oxidizer flow con-
ditions.

For a sharp change in burning rate w(r ) =k=const it is possible to find the solution of (1.1), (1.2) in
analytic form using the Laplace transformation. We introduce the transformed temperature
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From Eq. (1.1) and conditions (1.2) we have

_exp (=8 (k--Yexp(~ Yok + VI T3)E
B(E,S)~k+s_1+ S(k:_s_i)‘i / )

Using the inversion formula, we obtain

. otic
— Bk Ty exp (vs — VI? T 8) 1,
B(E,T) = et | (f — 1) ke S e AR g (1.3)

s—io

In the complex plane s the line of integration in (1.3) passes to the right of the singularities of the
integrand function, which are located at the points s;=0 (pole), s,=1—k (pole located on the negative or
positive semiaxis depending on the value of k), s3:--1/4k2 (branch point). Using the standard method of ob-
taining the inverse transform [2], we find that the integral on the right side of (1.3) is equal to the sum of
the residues of the integrand function at the poles s; and s, and to the integral along a branch cut in the
complex plane s, which may conveniently be taken from the branch point s3 along the real axis to § ——,
As a result we obtain

208, ) =1 — @ () +e ¥ [1 4 D ()] + a2 [ + D ()] — AP 4 + D ()] (1.4)

e =" (kv FEv70), mg4 =1, ((k — 2) v 4 Ev )
N
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(d) M) =—=\e?ds
o0 = e
The dimensionless temperature gradient

o= li s B e o {232

2, In [1] it is shown that for a diffusion flame to exist above the propellant the temperature gradient
at the surface must be less than a certain critical value. At the critical gradient fx the flow q of oxidizer
to the diffusion flame, given by the hydrodynamic conditions, takes its limiting value [3]

Mfy =0l +vg (s + Q) — 2R 1In (kﬁ/@ !q) P

(1= ~1oe)

Here, the heat transfer coefficient @ determines the heat flow from the diffusion flame to the gas and
is calculated from the hydrodynamic conditions, Tg is the temperature of the external flow, p is the gas
density, E and v are the activation energy and stoichiometric coefficient of the chemical reaction in the flame,
R is the gas constant, Q is the total erergy release per unit mass of propellant, which is equal to the dif-
ference between the energy of the reaction in the flame and the heat of gasification of the propellant, k, is
a dimensionless quantity that contains the total order of the reaction, D is the diffusion coefficient.

We will investigate the mechanism of collapse of the diffusion flame in the presence of a sharp in-
crease in burning rate. In Fig. 1 we have plotted the qualitative dependence of the critical (curve 1) and
steady-state A f°=vqe,; (Tg—T,) (straight line 2) gradients on the flow of oxidizer to the flame (the asymp-
tote of curve 1 is the straight line q =k,/pD). Let the steady-state burning of the propellant with oxidizer

i
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flow q, be described by the point A;. Following an instantaneous increase in burning rate the state of the
propellant changes along the straight line A,A parallel to the axis of abscissas, the temperature of the flame
increasing. Then, at a constant burning rate corresponding to oxidizer flow q, the temperature gradient in-
creases and a transition is made from the point A, to the new steady-state point B;. The duration of this
transient process T can be calculated by equating the gradient (1.5) to the steady-state gradient at the
point By

E L 4 © (ohty)] — (k — 2) €005 [1 4 D (fy (k — 2) 1] = 2v4a [ pyie®
(k=1q1/9) @.2)

If the increase in the flow of oxidizer to the flame is so great that the point describing the state of
the propellant, moving along the straight line A,A, intersects the curve 1 (for example, if it reaches the
point A,), then the diffusion flame will instantaneously collapse, since at the point of intersection the gra-
dientbecomes critical. If the increase in burning rate is such that the critical gradient is reached as the
representative point moves along the vertical straight line (the transition A; —A;—B,), then the diffusion
flame does not collapse immediately, but only after the time required for the heated zone to relax from the
point As to the point B,., This lag 7, can be calculated by equating the gradient (1.5) to the critical gradient
at the point B,

R{1+ @ (k™)) — (k — 2) e0= [1 - @ (), (k — 2) 7))

- _ ok ° - 2.3
2 [ocTe +¥0a (T + Q) — 7 VST ] / pguley (Ts — To) (2.3)
(k= qs/ 9o)

The maximum increase in burning rate k,, at which the diffusion flame does not collapse, corresponds
to the oxidizer flow g, and can be calculated from the conditions of intersection of curves 1 and 2

oT, + 90, T+ Q) — —i (kf% 5 = V463 (7o = To) (2.4)
(k* = ¢4/ qo)

3. We will investigate the acoustic stability of steady-state combustion of a solid propellant in a
cylindrical channel, through which flows a gaseous oxidizer (Fig. 2). We assume that in zone 2 (X =x=x,,
Xy =X * 1/2b), which is short as compared with the Iength of the channel, diffusion burning of the propellant
takes place, while the rest of the channel (zones 1 and 3) does not contain propellant (the region occupied
by the propellant is cross-hatched in the figure).

We employ the one-dimensional gas-dynamic equations of an ideal gas with heat and mass sources
concentrated at the channel walls in zone 2; the strength of these sources depends on the parameters of the
gas flow in accordance with the following expression for the mass burning rate (see [4])

m = Bycj® (3.1)

where ¢ is the relative mass oxidizer coneentration, B, and n are constants, and j is the mass velocity of
the gas flow.

Our investigation is based on the model described in detail in [5]. On the steady-state solutions in
zones 1 and 3 we superimpose small perturbations that depend on time as exp ft, 8 =v +iw, Linearizing
the equations in zones in 1 and 3 with respect to these perturbations, we obtain the solutions in the form
of standing acoustic waves [5]

5":%?“6@B(t—ﬁy>—i—3exp3<t——ﬁo—)] 3.2)

i z \ . z
8p = —Z—[Aexp B<t—m)-—BexpB (t —-?:‘ao—)]
Here, x is the coordinate along the channel axis, v is the gas velocity, p is pressure, a is the speed
of sound, A and B are constants; the perturbation of the quantity ¥ is denoted by &), and here and in what

follows steady-state values of the parameters are indicated by a superscript °. The perturbations of en~
tropy S and oxidizer concentration are entrained by the gas flow

x
2°

85 = CexpB(t—=), b= Hexpp(t—5) (3.3)
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As the acoustical boundary conditions at the entrance section of the channel we take the conditions
used in [5], namely,
z = 0, pv = const, prc = const (3.4)
Conditions (3.4) presuppose that the gas is supplied to the channel through a supersonic nozzle; ac-
cordingly, the rate of flow of the gas entering the channel is constant. Moreover, since the acoustic vibra~
tions do not produce entropy perturbations of the same order of smallness, we assume that
z =0, S = const (3.5)

Assuming that the flow of gas through the supersonic nozzle, in which the channel ends, is quasi-
stationary (i.e., that the period of the acoustic vibrations is large as compared with the time taken by a
fluid element to move through the nozzle zone, and that the length of the entropy wave transported by the
flow is much greater than the distance from the channel exit section to the throat of the nozzle at the chan~
nel outlet), we have (see [5])

z =1, M = const (M is the Mach number) (3.6)
Linearizing (3.4)-(3.6), we obtain
z=0, 2L 1% o =0 85=0 3.7)
r=1 6&6M=20

where y is the ratio of specific heats. The boundary conditions at the channel inlet give

M_°+1 . .
B_= mA C_=0, H_=0 v (3.8)

Here and in what follows quantities relating to zone 1 are denoted by a minus sign, quantities relating
to zone 3 by a plus sign.

We note that in the absence of a combustion zone the flow is naturally stable. In fact, substituting
(3.2) and (3.3) in (3.7) and using (3.8), we obtain
_Mr—ta (MY (1) M)
V= p] A=) 2 — (1 — 1) M

o=TE0 - MMHN, N=0,12...

Since M°<1 we have v< 0. The attenuation of the standing acoustic waves is caused by the dissipation
of acoustic energy through the nozzle.

The gas flow in combustion zone 2 is desecribed by the following equations used in [4] for the analysis
of transient channel burning regimes

op dpv 2
T T ™
9 a 2 d 7} 3.9
;tc _I_ S:’ = —"V; r m, aptv Az (p + pv2) = 0 ( )
d 1 p kD ) T p AR -
WP<TT1T+T>+3?9”(T:TT+T>—T(Q'” M)

where v and v, are stoichiometric coefficients, and r is the channel radius.

Following [5] we replace zone 2 with a surface of strong discontinuity located at x=x,. On the left of
this surface the flow perturbations coincide with the perturbations at x=x,~b/2, while on the right of the
surface x =x, they coineide with the corresponding quantities at x=x,+b/2. When we replace the real com-
bustion zone with a surface of strong discontinuity, we must assign to that surface all the important prop-
erties of zone 2; consequently, the solutions (3.2) and (3.3) on the left and right of that zone are coupled by
conditions that take into account the transfer of mass and thermal energy associated with combustion. We
will obtain one of these conditions. Integrating the first of equations (3.9) with respect to x across the com-
bustion zone, we have

: > & . (3.10)
'ng odr +p.v, —p V.=V TB"S et dx
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The integral on the left of (3.10) is equal to zero, since mass transfer takes place in a region fixed
relative to the channel walls and of short extent in the direction of the channel axis (b —0). We make the
simplifying assumption that the mass burning rate depends on the flow parameters at x=x,—0. Then (3.10)
takes the form

. 2 .
X=Xy PV, —PU_ =V By j™b

In the same way we obtain the conditions at the surface of discontinuity for the other three equations
(3.9). Linearizing the relations obtained with respect to the small corrections and using (3.8) and the re-
lations [6] between a small change in the burning rate (expressed by means of (3.1) in terms of the per-
turbations of the oxidizer concentration and the mass velocity of the gas flow) and the perturbation of the
temperature gradient at the propellant surface written in the form

8f VITaph—1 &m

F 2Bt m®

where t0=m/u°2 is the characteristic response time of the thermal zone, we obtain the following condition
relating the solutions in zones 1 and 3

v ®

P80, T 0p, — L85, = Ay (.0t 5 7.

4
(4

0.0, 80, + 1,"8c, + "4~ 8p, — __’+c:+ 85, = A, (p_°6u_ + 28 p_)
(A + M. 8p, +2j,%0, — 122088, — (1 — M_%) 8p_+2]_%bv_

p

(3.11)

) 1 1 o o0, © 1 3 cg v+°2,'°
v, (T—_T+TM+ 2)f>17mLpLa+2(——+TM+ )6u+—T:aS+

T—1
of X 1 o As ogeaf 1 3 o2 A
=00 (FE g M D) O+t (e M+ 7270
. b o . b m.e V1486 —1
Av=1+2vn B, Ay =c®—2vn 75, Ag=1 (1 TR _737&79—)
. bm_°Q _ a(ls—To

rj_°cpT_° ] Zy = Q

2y =2n

These relations hold at x=x,. Here, cp is the specific heat of the gas at constant pressure, z; is a
parameter characterizing the strength of the sources in the combustion zone, and z, is the ratio of the heat
stored in the solid propellant to the total reaction energy. To relations (3.11) we add the boundary condi-
tion (3.7) at the channel exit written in the form

1--1 6p, 88, o
z=1, B TD~2 = =0 (3.12)

We now substitute the solutions (3.2) and (3.3) obtained above in (3.11) and (3.12), using relations (3.8).
For purposes of a stability analysis the second of equations (3.11), which gives H in terms of A_, can be
omitted, since the quantity H, occurs only in that equation. (This is a consequence of the fact that the per-
turbations of the oxidizer concentration, generated in the combustion zone and entrained by the gas flow, do
not interact with the perturbations of pressure and velocity at the channel exit and in region 3.) As a re-
sult, we obtain a system of three equations expressing the quantities A,, B " and C, in terms of the constant
A_, which remains indeterminate. The condition of solvability of this system of equations, which consists
in its determinant being equal to zero, is very clumsy and not entirely amenable to investigation. Accord-
ingly, we will consider the case of small Mach numbers, namely, M_°, M + < 1. Retaining only terms of
zeroorderin M_° and M ° and assuming that the quantities a_°, a4’ are finite (acoustic vibrations in the sta-
tionary gas) and that v > 0 (unstable roots), we obtain the following equation for 3:

(3.13)

thpz, cthBt_ = —d [1 +z (1 — 2 Lﬁ?}“—iﬂ

d=ar’/a°)

Here, t-=xp/a.°, t;= (I —x)/a,° are the propagation times of the acoustic wave in zones 1 and 3,
respectively.

If the propagation times of the acoustic wave in zones 1 and 3 are equal, the solution of (3.13) is
easily found

2159 ~1 —d

Vg = 2,5, Oragzar: ©= 0 (3.14)
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ay % @‘ For real values of z, and z, the numerator of the
\\ \\ fraction in (3.15) is negative and v < 0; accordingly, at
t_=t, there are no solutions with v > 0.
i |£=4
\\\\ If the nonstationary character of the subsurface
NN heating zone, i.e., the reorganization associated with fluc~
) \\ NN tuations of the burning rate, is disregarded, then the per-
|z \ A ‘ turbations are damped and combustion is stable. In fact,
N \ \\M\ in this case Eq. (3.13) takes the form
1=/ o S — thBt, cth Bt = —d (1 + zy)
\ ~—— — +
L= =7 Separating the real and imaginary parts, we obtain
g 1 Z 7
. sh 2vi_sh 2vi, + sin 20 sin 20t 3.15
Fig. 3 (ch' 2vi_ — cos 1;oot ) (chi 2w, +-cos’ ;rmt AN —ad(l 4z ( )
sin 2et, =sh 2vt, sin 20¢_/sh 2v_ (3.16)

Substituting the expression for sin 2wt, from (3.16) in (3.15), we see that the left side of (3.15) is
positive at ¥ > 0. Since the right of this equation is negative, system of equations (3.15), (3.16) does not have
solutions in the region v >0,

We will now show that taking the nonstationary process into account leads to the appearance of un-
stable roots., For this purpose we consider Eg. (3.13), assuming that

vil, vi, L, 0>V, 0fp>1 (3.17)
Conditions (3.17) make it possible to substitute for (3.13) the following equation:

sin 20ty sin 2wf_ I iv (f_sin 20t, — £, sin2w¢) 1—i
: 4cos? ot sin? (Jot_+ * =—d [1 + 2z ( — 3 Vier )] (3.18)
In obtaining (8.18) we also made use of the conditions
sin 20t_==0, sin2wf, =0, vi_<€|sinot_| (3.19)

vt, <L [sinot, |, +*_t, <]|sin20t_sin2oet, |
Conditions (3.17) and (3.19) are subject to verification after the roots have been found.

Separating the real and imaginary parts in (3.18) and neglecting the quantity z,z,/v 2 wt, as compared
with unity by virtue of one of conditions (3.17), we obtain

F)=clgot_tget, =—d® ([d2=d(1+32) (3.20)
sin? of_ cos® wt,. -1 /2 (3.21)
v=dy? t, sin 20f_ — t_gin 20t dy? = ol dzyz,

It is easy to show that the quantity v is positive if the root of Eq. (3.20) satisfies the conditions tan
wt_ >0, tan wt, <0, which we rewrite as follows:

AL QL A 42, I g ondhM) (3.22)

Q=wt; h=t/t; L,M=012..)

Figure 3 represent the plane h?, on which we have plotted the regions defined by inequalities (3.22)
for various L and M; they constitute four-sided figures bounded by two straight lines @ =71, Q= 1/ m1+2L)
and two hyperbolas Q =7 (1 +2M)/2h, @ =r(1+M)/h. In order to determine the values of @ which, for a spe-
cific h, give v > 0, it is necessary to draw a straight line parallel to the ordinate axis, as has been done in
Fig. 3 for h=2; the region of required @ lies between the ordinates of the upper and lower points of inter-
section of this straight line and the sides of a given quadrangle. For h=1thereare nosuchregions, since the
straight line h=1 does not intersect any of the shaded figures; for any other h there are infinitely many (for
h< 1 the projections on the axis of abscissas of the regions (3.22), constructed for fixed M, span all values
of h owing to the overlapping of the projections of adjacent figures; all values of h > 1 are spanned by the
projections on the axis of abscissas of the quadrangles constructed for fixed L).

We will now show that in any such region, found for a given h, there is a root of Eq. (3.20). In fact,
as @ —7L +0 and @ —r(1+ 2M)/2h +0 the function F(Q) —— «, and as @ ~¥, (1 +2L)—0 and @ —7 (1 +M)/h—0
F(Q)——0. Hence as Q varies within a given region, the function necessarily takes a value equal to —dZ.
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Thus, for any h#1 there exist infinitely many roots of equation (3.14) with v > 0. By selecting among them
roots with a sufficiently large value of w itis possible to satisfy conditions (3.17) and (3.19).

In conclusion the author thanks B. V. Librovich for formulating and discussing the problem and A. G.
Istratov and V. G. Markov for their valuable comments.
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